天文学辞典 | 天文用語をわかりやすく解説

リーマンテンソル

 

よみ方

りーまんてんそる

英 語

Riemann tensor

説 明

一般に空間(時空)の近傍の2点間の距離の2乗が、2点間の座標の2次形式で表されるとき、その空間(時空)をリーマン空間(時空)と呼ぶ。座標の2次形式の係数をメトリックテンソルと呼び、2階の対称テンソルである。リーマン空間(時空)における空間(時空)の曲がりは、メトリックテンソルとその1階と2階の偏微分からつくられる4階のテンソルで表され、これをリーマンテンソルという。4次元のリーマンテンソルは256個の成分をもつが、添え字の対称性から独立な成分は20個だけである。そのうちの10個はリーマンテンソルを縮約して得られる2階のリッチテンソルが決めるが、残りの10個を決めるのが4階のワイルテンソルである。
一般相対性理論においては時空の曲がりを決めるアインシュタイン方程式は、リッチテンソルを用いて書くことができ、物質の分布を表す2階のストレス-エネルギーテンソルが境界条件(あるいは初期条件)を除いてリッチテンソルを決めるという構造になっている。したがって物質がない場合、リッチテンソルはゼロであるが、リーマンテンソルのすべての成分がゼロというわけではないので、時空は平坦であるとは限らない。ブラックホール重力波は物質がなくても時空が曲がっている例である。

2018年03月11日更新

関連画像